Monotonicity preserving multigrid time stepping schemes for conservation laws
نویسندگان
چکیده
In this paper, we propose monotonicity preserving and total variation diminishing (TVD) multigrid methods for solving scalar conservation laws. We generalize the upwind-biased residual restriction and interpolation operators for solving linear wave equations to nonlinear conservation laws. The idea is to define nonlinear restriction and interpolation based on localRiemann solutions. Theoretical analyses have been provided to analyze the monotonicity preserving and TVD properties of the resulting multigrid time stepping schemes. Numerical results are given to verify the theoretical results and demonstrate the effectiveness of the proposed schemes. Two dimensional extension is also discussed.
منابع مشابه
A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملExistence of discrete shock profiles of a class of monotonicity preserving schemes for conservation laws
When shock speed s times ∆t/∆x is rational, the existence of solutions of shock profile equations on bounded intervals for monotonicity preserving schemes with continuous numerical flux is proved. A sufficient condition under which the above solutions can be extended to −∞ < j < ∞, implying the existence of discrete shock profiles of numerical schemes, is provided. A class of monotonicity prese...
متن کاملMultigrid Methods for Systems of Hyperbolic Conservation Laws
In this paper, we present total variation diminishing (TVD) multigrid methods for computing the steady state solutions for systems of hyperbolic conservation laws. An efficient multigrid method should avoid spurious numerical oscillations. This can be achieved by designing methods which preserve monotonicity and TVD properties through the use of upwind interpolation and restriction techniques. ...
متن کاملOn monotonicity, stability, and construction of central schemes for hyperbolic conservation laws with source terms
The monotonicity and stability of difference schemes for, in general, hyperbolic systems of conservation laws with source terms are studied. The basic approach is to investigate the stability and monotonicity of a non-linear scheme in terms of its corresponding scheme in variations. Such an approach leads to application of the stability theory for linear equation systems to establish stability ...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007